Approximating the minimum rank of a graph via alternating projection

نویسنده

  • Franklin Kenter
چکیده

The minimum rank problem asks to find the minimum rank over all matrices with given pattern associated with a graph. This problem is NP-hard, and there is no known approximation method. In this article, a numerical algorithm is given to heuristically approximate the minimum rank using alternating projections. The effectiveness of this algorithm is demonstrated by comparing its results to a related parameter: the zero-forcing number. Using these methods, numerical evidence for the minimum rank graph complement conjecture is provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the computational complexity of finding a minimal basis for the guess and determine attack

Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...

متن کامل

Distributed consensus on minimum time rendezvous via cyclic alternating projection

— In this paper, we propose a distributed algorithm to solve planar minimum time multi-vehicle rendezvous problem with non-identical velocity constraints on cyclic di-graph (topology). Motivated by the cyclic alternating projection method that can compute a point's projection on the intersection of some convex sets, we transform the minimum time rendezvous problem into finding the distance betw...

متن کامل

Modelling Decision Problems Via Birkhoff Polyhedra

A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...

متن کامل

A Forward-Backward Projection Algorithm for Approximating of the Zero of the ‎S‎um of ‎T‎wo Operators

‎I‎n this paper‎, ‎a‎ forward-‎b‎ackward projection algorithm is considered for finding zero points of the sum of two operators‎ ‎in Hilbert spaces‎. ‎The sequence generated by algorithm converges strongly to the zero point of the sum of an $alpha$-inverse strongly‎ ‎monotone operator and a maximal monotone operator‎. ‎We apply the result for solving the variational inequality problem, fixed po...

متن کامل

A fast alternating projection method for complex frequency estimation

The problem of approximating a sampled function using sums of a fixed number of complex exponentials is considered. We use alternating projections between fixed rank matrices and Hankel matrices to obtain such an approximation. Convergence, convergence rates and error estimates for this technique are proven, and fast algorithms are developed. We compare the numerical results obtain with the MUS...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Oper. Res. Lett.

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2016